Home Virus Germs & Bacteria A novel Borrelia species, intermediate between Lyme disease and relapsing fever groups, in neotropical passerine-associated ticks

A novel Borrelia species, intermediate between Lyme disease and relapsing fever groups, in neotropical passerine-associated ticks

by World Health Now
0 comment


  • 1.

    Ogden, N. H., Artsob, H., Margos, G. & Tsao, J. Non-ricketsial tick-borne bacteria and the diseases they cause. in Biology of Ticks 278–312 (Edited by Sonenshine, D. E., New York, NY: Oxford University Press, 2014).

  • 2.

    Talagrand-Reboul, E., Boyer, P. H., Bergström, S., Vial, L. & Boulanger, N. Relapsing fevers: neglected tick-borne siseases. Front Cell Infect Microbiol 8, 98 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 3.

    Nelson, C. A. et al. Incidence of clinician-diagnosed Lyme disease, United States, 2005–2010. Emerging Infect. Dis. 21, 1625–1631 (2015).

  • 4.

    Hinckley, A. F. et al. Lyme disease testing by large commercial laboratories in the United States. Clin. Infect. Dis. 59, 676–681 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 5.

    Lopez, J. E., Krishnavahjala, A., Garcia, M. N. & Bermudez, S. Tick-borne relapsing fever spirochetes in the Americas. Vet Sci 3 (2016).

  • 6.

    Ras, N. M. et al. Phylogenesis of relapsing fever Borrelia spp. Int. J. Syst. Bacteriol. 46, 859–865 (1996).

    CAS 

    Google Scholar 

  • 7.

    Takano, A. et al. Multilocus sequence typing implicates rodents as the main reservoir host of human-pathogenic Borrelia garinii in Japan. J Clin Microbiol 49, 2035–2039 (2011).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 8.

    Adeolu, M. & Gupta, R. S. A phylogenomic and molecular marker based proposal for the division of the genus Borrelia into two genera: the emended genus Borrelia containing only the members of the relapsing fever Borrelia, and the genus Borreliella gen. nov. containing the members of the Lyme disease Borrelia (Borrelia burgdorferi sensu lato complex). Antonie Van Leeuwenhoek 105, 1049–1072 (2014).

    PubMed 

    Google Scholar 

  • 9.

    Barbour, A. G., Adeolu, M. & Gupta, R. S. Division of the genus Borrelia into two genera (corresponding to Lyme disease and relapsing fever groups) reflects their genetic and phenotypic distinctiveness and will lead to a better understanding of these two groups of microbes (Margos et al. (2016). There is inadequate evidence to support the division of the genus Borrelia. Int. J. Syst. Evol. Microbiol. 67, 2058–2067, https://doi.org/10.1099/ijsem.0.001717) (2017). International Journal of Systematic and Evolutionary Microbiology.

    Article 

    Google Scholar 

  • 10.

    Güner, E. S. et al. Borrelia turcica sp. nov., isolated from the hard tick Hyalomma aegyptium in Turkey. Int. J. Syst. Evol. Microbiol. 54, 1649–1652 (2004).

    Google Scholar 

  • 11.

    Loh, S.-M. et al. Novel Borrelia species detected in echidna ticks, Bothriocroton concolor, in Australia. Parasit Vectors 9, 339 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 12.

    Loh, S.-M., Gillett, A., Ryan, U., Irwin, P. & Oskam, C. Molecular characterization of ‘Candidatus Borrelia tachyglossi’ (family Spirochaetaceae) in echidna ticks, Bothriocroton concolor. Int. J. Syst. Evol. Microbiol. 67, 1075–1080 (2017).

    CAS 

    Google Scholar 

  • 13.

    Panetta, J. L. et al. Reptile-associated Borrelia species in the goanna tick (Bothriocroton undatum) from Sydney, Australia. Parasit Vectors 10, 616 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 14.

    Takano, A. et al. Isolation and characterization of a novel Borrelia group of tick-borne borreliae from imported reptiles and their associated ticks. Environ. Microbiol. 12, 134–146 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • 15.

    Mitchell, E. A. et al. Frequency and distribution of rickettsiae, borreliae, and ehrlichiae detected in human-parasitizing ticks, Texas, USA. Emerg Infect Dis 22, 312–315 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 16.

    Pacheco, A. et al. Hemoparasites in ticks of wild birds of Serra dos Órgãos National Park, state of Rio de Janeiro, Brazil. Rev Bras Parasitol Vet 28, 238–244 (2019).

    PubMed 

    Google Scholar 

  • 17.

    Cicuttin, G. L., De Salvo, M. N., Venzal, J. M. & Nava, S. Borrelia spp. in ticks and birds from a protected urban area in Buenos Aires city, Argentina. Ticks and Tick-borne Diseases 10, 101282 (2019).

    PubMed 

    Google Scholar 

  • 18.

    Lee, J. K. et al. Detection of a Borrelia species in questing Gulf Coast ticks, Amblyomma maculatum. Ticks Tick Borne Dis 5, 449–452 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 19.

    Gofton, A. W. et al. Genome-wide analysis of Borrelia turcica and ‘Candidatus Borrelia tachyglossi’ shows relapsing fever-like genomes with unique genomic links to Lyme disease Borrelia. Infect. Genet. Evol. 66, 72–81 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 20.

    Kaenkan, W. et al. Reptile-associated Borrelia spp. In Amblyomma ticks, Thailand. Ticks and Tick-borne Diseases 11, 101315 (2020).

    PubMed 

    Google Scholar 

  • 21.

    Trinachartvanit, W. et al. Borrelia sp. phylogenetically different from Lyme disease- and relapsing fever-related Borrelia spp. in Amblyomma varanense from Python reticulatus. Parasit Vectors 9, 359 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 22.

    Teel, P. D., Ketchum, H. R., Mock, D. E., Wright, R. E. & Strey, O. F. The Gulf Coast tick: a review of the life history, ecology, distribution, and emergence as an arthropod of medical and veterinary importance. J. Med. Entomol. 47, 707–722 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • 23.

    Wilson, N. & Durden, L. A. Ectoparasites of terrestrial vertebrates inhabiting the Georgia Barrier Islands, USA: an inventory and preliminary biogeographical analysis. Journal of Biogeography 30, 1207–1220 (2003).

    Google Scholar 

  • 24.

    Floch, H. & Fauran, P. Ixodides de la Guyane et des Antilles Françaises. Publ Inst Pasteur Guyane Fr Inini 19, 1–94 (1958).

    PubMed 

    Google Scholar 

  • 25.

    Binetruy, F., Chevillon, C., de Thoisy, B., Garnier, S. & Duron, O. Survey of ticks in French Guiana. Ticks and Tick-borne Diseases 10, 77–85 (2019).

    PubMed 

    Google Scholar 

  • 26.

    Richter, D., Debski, A., Hubalek, Z. & Matuschka, F.-R. Absence of Lyme disease spirochetes in larval Ixodes ricinus ticks. Vector Borne Zoonotic Dis. 12, 21–27 (2012).

    PubMed 

    Google Scholar 

  • 27.

    Rollend, L., Fish, D. & Childs, J. E. Transovarial transmission of Borrelia spirochetes by Ixodes scapularis: a summary of the literature and recent observations. Ticks Tick Borne Dis 4, 46–51 (2013).

    PubMed 

    Google Scholar 

  • 28.

    Scoles, G. A., Papero, M., Beati, L. & Fish, D. A relapsing fever group spirochete transmitted by Ixodes scapularis ticks. Vector Borne Zoonotic Dis. 1, 21–34 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • 29.

    van Duijvendijk, G. et al. Larvae of Ixodes ricinus transmit Borrelia afzelii and B. miyamotoi to vertebrate hosts. Parasit Vectors 9, 97 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 30.

    Guglielmone, A. A. et al. Ticks (Ixodidae) on humans in South America. Experimental and Applied Acarology 40, 83–100 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • 31.

    Nava, S., Velazco, P. M. & Guglielmone, A. A. First record of Amblyomma longirostre (Koch, 1844) (Acari: Ixodidae) from Peru, with a review of this tick’s host relationships. Systematic and Applied Acarology 15, 21–30 (2010).

    Google Scholar 

  • 32.

    Jones, E. K., Clifford, C. M., Keirans, J. E. & Kohls, G. M. Ticks of Venezuela (Acarina: Ixodoidea) with a key to the species of Amblyomma in the Western Hemisphere. Brigham Young University Science Bulletin, Biological Series 17 (1972).

  • 33.

    Ogrzewalska, M., Uezu, A. & Labruna, M. B. Ticks (Acari: Ixodidae) infesting wild birds in the eastern Amazon, northern Brazil, with notes on rickettsial infection in ticks. Parasitol. Res. 106, 809–816 (2010).

    PubMed 

    Google Scholar 

  • 34.

    Ogrzewalska, M. et al. Ticks (Acari: Ixodidae) infesting birds in an Atlantic rain forest region of Brazil. J. Med. Entomol. 46, 1225–1229 (2009).

    PubMed 

    Google Scholar 

  • 35.

    Mukherjee, N. et al. Importation of exotic ticks and tick-borne spotted fever group rickettsiae into the United States by migrating songbirds. Ticks Tick Borne Dis 5, 127–134 (2014).

    PubMed 

    Google Scholar 

  • 36.

    Noden, B. H., Arnold, D. & Grantham, R. First report of adult Amblyomma longirostre (Acari: Ixodidae) in Oklahoma. Systematic and Applied Acarology 20, 468–470 (2015).

    Google Scholar 

  • 37.

    Durden, L. A. & Kollars, J. T. M. An annotated list of the ticks (Acari: Ixodoidea) of Tennessee, with records of four exotic species for the United States. Bulletin of the Society of Vector Ecology 17, 125–131 (1992).

    Google Scholar 

  • 38.

    Hamer, S. A. et al. Wild birds and urban ecology of ticks and tick-borne pathogens, Chicago, Illinois, USA, 2005–2010. Emerging Infect. Dis. 18, 1589–1595 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 39.

    Scott, J. D. et al. Birds disperse ixodid (Acari: Ixodidae) and Borrelia burgdorferi-infected ticks in Canada. J. Med. Entomol. 38, 493–500 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • 40.

    Barbour, A. G., Dai, Q., Restrepo, B. I., Stoenner, H. G. & Frank, S. A. Pathogen escape from host immunity by a genome program for antigenic variation. Proc. Natl. Acad. Sci. USA 103, 18290–18295 (2006).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 41.

    Cook, M. J. & Puri, B. K. Commercial test kits for detection of Lyme borreliosis: a meta-analysis of test accuracy. Int J Gen Med 9, 427–440 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 42.

    Hepner, S. et al. First investigations on serum resistance and sensitivity of Borrelia turcica. Ticks and Tick-borne Diseases 10, 1157–1161 (2019).

    PubMed 

    Google Scholar 

  • 43.

    Bastian, M., Heymann, S. & Jacomy, M. Gephi. An open source software for exploring and manipulating networks. International AAAI Conference on Weblogs and Social Media 2 (2009).

  • 44.

    Galan, M. et al. 16S rRNA amplicon sequencing for epidemiological surveys of bacteria in wildlife. mSystems 1 (2016).

  • 45.

    Binetruy, F., Dupraz, M., Buysse, M. & Duron, O. Surface sterilization methods impact measures of internal microbial diversity in ticks. Parasites & Vectors 12, 268 (2019).

    Google Scholar 

  • 46.

    Escudié, F. et al. FROGS: Find, Rapidly, OTUs with Galaxy Solution. Bioinformatics 34, 1287–1294 (2018).

    PubMed 

    Google Scholar 

  • 47.

    Thompson, J. D., Gibson, T. J. & Higgins, D. G. Multiple sequence alignment using ClustalW and ClustalX. Curr Protoc Bioinformatics Chapter 2, Unit 2, 3 (2002).

    Google Scholar 

  • 48.

    Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874 (2016).

    CAS 

    Google Scholar 

  • 49.

    Barbour, A. G. Isolation and cultivation of Lyme disease spirochetes. Yale J Biol Med 57, 521–525 (1984).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 50.

    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 51.

    Bankevich, A. et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19, 455–477 (2012).

    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 52.

    Tatusova, T. et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 44, 6614–6624 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 53.

    Noé, L. & Kucherov, G. YASS: enhancing the sensitivity of DNA similarity search. Nucleic Acids Res. 33, W540–543 (2005).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 54.

    Darling, A. C. E., Mau, B., Blattner, F. R. & Perna, N. T. Mauve: Multiple alignment of conserved genomic sequence with rearrangements. Genome Res 14, 1394–1403 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 55.

    Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 56.

    Page, A. J. et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 31, 3691–3693 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 57.

    Castresana, J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17, 540–552 (2000).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 58.

    Benedict, M. N., Henriksen, J. R., Metcalf, W. W., Whitaker, R. J. & Price, N. D. ITEP: An integrated toolkit for exploration of microbial pan-genomes. BMC Genomics 15, 8 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 59.

    Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 60.

    Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 



  • Source link

    You may also like

    Leave a Comment