Home Virus Germs & Bacteria Hemoglobin stimulates vigorous growth of Streptococcus pneumoniae and shapes the pathogen’s global transcriptome

Hemoglobin stimulates vigorous growth of Streptococcus pneumoniae and shapes the pathogen’s global transcriptome

by World Health Now
0 comment


  • 1.

    Eurich, D. T., Marrie, T. J., Minhas-Sandhu, J. K. & Majumdar, S. R. Risk of heart failure after community acquired pneumonia: prospective controlled study with 10 years of follow-up. BMJ 356, j413 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 2.

    Musher, D. M., Rueda, A. M., Kaka, A. S. & Mapara, S. M. The association between pneumococcal pneumonia and acute cardiac events. Clin. Infect. Dis. 45, 158–165 (2007).

    PubMed 

    Google Scholar 

  • 3.

    Levine, O. S. & Klugman, K. P. Editorial: breathing new life into pneumonia epidemiology. Am. J. Epidemiol. 170, 1067–1068 (2009).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 4.

    Walker, C. L. F. et al. Global burden of childhood pneumonia and diarrhoea. Lancet 381, 1405–1416 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 5.

    Kadioglu, A., Weiser, J. N., Paton, J. C. & Andrew, P. W. The role of Streptococcus pneumoniae virulence factors in host respiratory colonization and disease. Nat. Rev. Microbiol. 6, 288–301 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • 6.

    Weiser, J. N., Ferreira, D. M. & Paton, J. C. Streptococcus pneumoniae: transmission, colonization and invasion. Nat. Rev. Microbiol. 16, 355–367 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 7.

    Jedrzejas, M. J. Pneumococcal virulence factors: structure and function. Microbiol. Mol. Biol. Rev. 65, 187–207 (2001) (first page, table of contents).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 8.

    Klugman, K. P., Madhi, S. A. & Albrich, W. C. Novel approaches to the identification of Streptococcus pneumoniae as the cause of community-acquired pneumonia. Clin. Infect. Dis. 47(Suppl 3), S202-206 (2008).

    PubMed 

    Google Scholar 

  • 9.

    van der Poll, T. & Opal, S. M. Pathogenesis, treatment, and prevention of pneumococcal pneumonia. Lancet 374, 1543–1556 (2009).

    PubMed 

    Google Scholar 

  • 10.

    Carvalho, S. M., Kuipers, O. P. & Neves, A. R. Environmental and nutritional factors that affect growth and metabolism of the pneumococcal serotype 2 strain D39 and its nonencapsulated derivative strain R6. PLoS ONE 8, e58492 (2013).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 11.

    Goncalves, V. M. et al. Purification of capsular polysaccharide from Streptococcus pneumoniae serotype 23F by a procedure suitable for scale-up. Biotechnol. Appl. Biochem. 37, 283–287 (2003).

    PubMed 

    Google Scholar 

  • 12.

    Massaldi, H. et al. Features of bacterial growth and polysaccharide production of Streptococcus pneumoniae serotype 14. Biotechnol. Appl. Biochem. 55, 37–43 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • 13.

    Slotved, H. C. & Satzke, C. In vitro growth of pneumococcal isolates representing 23 different serotypes. BMC Res. Notes 6, 208 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 14.

    Brown, J. S., Gilliland, S. M., Ruiz-Albert, J. & Holden, D. W. Characterization of pit, a Streptococcus pneumoniae iron uptake ABC transporter. Infect. Immun. 70, 4389–4398 (2002).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 15.

    Berry, A. M., Lock, R. A., Hansman, D. & Paton, J. C. Contribution of autolysin to virulence of Streptococcus pneumoniae. Infect. Immun. 57, 2324–2330 (1989).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 16.

    Berry, A. M. & Paton, J. C. Additive attenuation of virulence of Streptococcus pneumoniae by mutation of the genes encoding pneumolysin and other putative pneumococcal virulence proteins. Infect. Immun. 68, 133–140 (2000).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 17.

    Regev-Yochay, G., Trzcinski, K., Thompson, C. M., Lipsitch, M. & Malley, R. SpxB is a suicide gene of Streptococcus pneumoniae and confers a selective advantage in an in vivo competitive colonization model. J. Bacteriol. 189, 6532–6539 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 18.

    18Grousd, J. A., Rich, H. E. & Alcorn, J. F. Host-pathogen interactions in gram-positive bacterial pneumonia. Clin. Microbiol. Rev. 32 (2019).

  • 19.

    Lopez, C. A. & Skaar, E. P. The impact of dietary transition metals on host-bacterial interactions. Cell Host Microbe 23, 737–748 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 20.

    Palmer, L. D. & Skaar, E. P. Transition metals and virulence in bacteria. Annu. Rev. Genet. 50, 67–91 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 21.

    Tai, S. S., Lee, C. J. & Winter, R. E. Hemin utilization is related to virulence of Streptococcus pneumoniae. Infect. Immun. 61, 5401–5405 (1993).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 22.

    Turner, A. G., Ong, C. Y., Walker, M. J., Djoko, K. Y. & McEwan, A. G. Transition metal homeostasis in Streptococcus pyogenes and Streptococcus pneumoniae. Adv. Microb. Physiol. 70, 123–191 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 23.

    Ge, R. & Sun, X. Iron acquisition and regulation systems in Streptococcus species. Metallomics 6, 996–1003 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 24.

    Tai, S. S., Yu, C. & Lee, J. K. A solute binding protein of Streptococcus pneumoniae iron transport. FEMS Microbiol. Lett. 220, 303–308 (2003).

    CAS 
    PubMed 

    Google Scholar 

  • 25.

    Romero-Espejel, M. E., Rodriguez, M. A., Chavez-Munguia, B., Rios-Castro, E. & Olivares-Trejo Jde, J. Characterization of Spbhp-37, a hemoglobin-binding protein of Streptococcus pneumoniae. Front. Cell Infect. Microbiol. 6, 47 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 26.

    Miao, X. et al. A novel iron transporter SPD_1590 in Streptococcus pneumoniae contributing to bacterial virulence properties. Front. Microbiol. 9, 1624 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 27.

    Cook, L. C. C. et al. Transcriptomic analysis of Streptococcus pyogenes colonizing the vaginal mucosa identifies hupY, an MtsR-regulated adhesin involved in heme utilization. mBio 10 (2019).

  • 28.

    Ponka, P., Grady, R. W., Wilczynska, A. & Schulman, H. M. The effect of various chelating agents on the mobilization of iron from reticulocytes in the presence and absence of pyridoxal isonicotinoyl hydrazone. Biochem. Biophys. Acta. 802, 477–489 (1984).

    CAS 
    PubMed 

    Google Scholar 

  • 29.

    King, K. Y., Horenstein, J. A. & Caparon, M. G. Aerotolerance and peroxide resistance in peroxidase and PerR mutants of Streptococcus pyogenes. J. Bacteriol. 182, 5290–5299 (2000).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 30.

    Bates, C. S., Montanez, G. E., Woods, C. R., Vincent, R. M. & Eichenbaum, Z. Identification and characterization of a Streptococcus pyogenes operon involved in binding of hemoproteins and acquisition of iron. Infect. Immun. 71, 1042–1055 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 31.

    Kerr, A. R. et al. The Ami-AliA/AliB permease of Streptococcus pneumoniae is involved in nasopharyngeal colonization but not in invasive disease. Infect. Immun. 72, 3902–3906 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 32.

    Bai, X. H. et al. Structure of pneumococcal peptidoglycan hydrolase LytB reveals insights into the bacterial cell wall remodeling and pathogenesis. J. Biol. Chem. 289, 23403–23416 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 33.

    Eijkelkamp, B. A. et al. The first histidine triad motif of PhtD Is critical for zinc homeostasis in Streptococcus pneumoniae. Infect. Immun. 84, 407–415 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 34.

    Jensch, I. et al. PavB is a surface-exposed adhesin of Streptococcus pneumoniae contributing to nasopharyngeal colonization and airways infections. Mol. Microbiol. 77, 22–43 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • 35.

    Brown, J. S., Gilliland, S. M. & Holden, D. W. A Streptococcus pneumoniae pathogenicity island encoding an ABC transporter involved in iron uptake and virulence. Mol. Microbiol. 40, 572–585 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • 36.

    Romero-Espejel, M. E., Gonzalez-Lopez, M. A. & Olivares-Trejo Jde, J. Streptococcus pneumoniae requires iron for its viability and expresses two membrane proteins that bind haemoglobin and haem. Metallomics 5, 384–389 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 37.

    Shafeeq, S., Kuipers, O. P. & Kloosterman, T. G. Cellobiose-mediated gene expression in Streptococcus pneumoniae: a repressor function of the novel GntR-type regulator BguR. PLoS ONE 8, e57586 (2013).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 38.

    Bidossi, A. et al. A functional genomics approach to establish the complement of carbohydrate transporters in Streptococcus pneumoniae. PLoS ONE 7, e33320 (2012).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 39.

    Dehal, P. S. et al. MicrobesOnline: an integrated portal for comparative and functional genomics. Nucl. Acids Res. 38, D396-400 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • 40.

    Anzaldi, L. L. & Skaar, E. P. Overcoming the heme paradox: heme toxicity and tolerance in bacterial pathogens. Infect. Immun. 78, 4977–4989 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 41.

    Sachla, A. J., Le Breton, Y., Akhter, F., McIver, K. S. & Eichenbaum, Z. The crimson conundrum: heme toxicity and tolerance in GAS. Front. Cell Infect. Microbiol. 4, 159 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 42.

    Sheldon, J. R. & Heinrichs, D. E. Recent developments in understanding the iron acquisition strategies of gram positive pathogens. FEMS Microbiol. Rev. 39, 592–630 (2015).

    PubMed 

    Google Scholar 

  • 43.

    Montañez, G. E., Neely, M. N. & Eichenbaum, Z. The streptococcal iron uptake (Siu) transporter is required for iron uptake and virulence in a zebrafish infection model. Microbiology (Reading, England) 151, 3749–3757 (2005).

    Google Scholar 

  • 44.

    Rouault, T. A. Microbiology. Pathogenic bacteria prefer heme. Science (New York, N.Y.) 305, 1577–1578 (2004).

    CAS 

    Google Scholar 

  • 45.

    Lyles, K. V. & Eichenbaum, Z. From host heme to iron: the expanding spectrum of heme degrading enzymes used by pathogenic bacteria. Front. Cell Infect. Microbiol. 8, 198 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 46.

    Foresti, R., Green, C. J. & Motterlini, R. Generation of bile pigments by haem oxygenase: a refined cellular strategy in response to stressful insults. Biochem. Soc. Symp. 177–192 (2004).

  • 47.

    Vitek, L. & Schwertner, H. A. The heme catabolic pathway and its protective effects on oxidative stress-mediated diseases. Adv. Clin. Chem. 43, 1–57 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • 48.

    Mercade, M., Lindley, N. D. & Loubiere, P. Metabolism of Lactococcus lactis subsp. cremoris MG 1363 in acid stress conditions. Int. J. Food Microbiol. 55, 161–165 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • 49.

    Claverys, J. P., Grossiord, B. & Alloing, G. Is the Ami-AliA/B oligopeptide permease of Streptococcus pneumoniae involved in sensing environmental conditions?. Res. Microbiol. 151, 457–463 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • 50.

    Cundell, D. R., Pearce, B. J., Sandros, J., Naughton, A. M. & Masure, H. R. Peptide permeases from Streptococcus pneumoniae affect adherence to eucaryotic cells. Infect. Immun. 63, 2493–2498 (1995).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 51.

    Shenoy, A. T. et al. Streptococcus pneumoniae in the heart subvert the host response through biofilm-mediated resident macrophage killing. PLoS Pathog. 13, e1006582 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 52.

    Piet, J. R. et al. Streptococcus pneumoniae arginine synthesis genes promote growth and virulence in pneumococcal meningitis. J. Infect. Dis. 209, 1781–1791 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 53.

    Tettelin, H. et al. Complete genome sequence of a virulent isolate of Streptococcus pneumoniae. Science (New York, N.Y.) 293, 498–506 (2001).

    CAS 

    Google Scholar 

  • 54.

    Philips, B. J., Meguer, J. X., Redman, J. & Baker, E. H. Factors determining the appearance of glucose in upper and lower respiratory tract secretions. Intensive Care Med. 29, 2204–2210 (2003).

    PubMed 

    Google Scholar 

  • 55.

    Shelburne, S. A., Davenport, M. T., Keith, D. B. & Musser, J. M. The role of complex carbohydrate catabolism in the pathogenesis of invasive streptococci. Trends Microbiol 16, 318–325 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 56.

    Rose, M. C. & Voynow, J. A. Respiratory tract mucin genes and mucin glycoproteins in health and disease. Physiol. Rev. 86, 245–278 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • 57.

    Yesilkaya, H., Manco, S., Kadioglu, A., Terra, V. S. & Andrew, P. W. The ability to utilize mucin affects the regulation of virulence gene expression in Streptococcus pneumoniae. FEMS Microbiol. Lett. 278, 231–235 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • 58.

    Burnaugh, A. M., Frantz, L. J. & King, S. J. Growth of Streptococcus pneumoniae on human glycoconjugates is dependent upon the sequential activity of bacterial exoglycosidases. J. Bacteriol. 190, 221–230 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • 59.

    Terra, V. S., Homer, K. A., Rao, S. G., Andrew, P. W. & Yesilkaya, H. Characterization of novel beta-galactosidase activity that contributes to glycoprotein degradation and virulence in Streptococcus pneumoniae. Infect. Immun. 78, 348–357 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • 60.

    Paixao, L. et al. Host glycan sugar-specific pathways in Streptococcus pneumoniae: galactose as a key sugar in colonisation and infection [corrected]. PLoS ONE 10, e0121042 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 61.

    Minhas, V. et al. Capacity to utilize raffinose dictates pneumococcal disease phenotype. MBio 10 (2019).

  • 62.

    CDC. Antibiotic resistance threats in the United States (2019).

  • 63.

    O’Brien, K. L. et al. Evaluation of a medium (STGG) for transport and optimal recovery of Streptococcus pneumoniae from nasopharyngeal secretions collected during field studies. J. Clin. Microbiol. 39, 1021–1024 (2001).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 64.

    Porter, R. D. & Guild, W. R. Characterization of some pneumococcal bacteriophages. J. Virol. 19, 659–667 (1976).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 65.

    EPA, U. S. Vol. Revision 5.4 (1994).

  • 66.

    EPA, U. S. Method 3052: Microwave Assisted Acid Digestion of Siliceous and Organically Based Matrices. Revision 0 (1996).

  • 67.

    Vidal, J. E., Ludewick, H. P., Kunkel, R. M., Zahner, D. & Klugman, K. P. The LuxS-dependent quorum-sensing system regulates early biofilm formation by Streptococcus pneumoniae strain D39. Infect. Immun. 79, 4050–4060 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 68.

    Havarstein, L. S., Coomaraswamy, G. & Morrison, D. A. An unmodified heptadecapeptide pheromone induces competence for genetic transformation in Streptococcus pneumoniae. Proc. Natl. Acad. Sci. USA 92, 11140–11144 (1995).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • 69.

    Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 70.

    Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 71.

    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 72.

    Avery, O. T., Macleod, C. M. & McCarty, M. Studies on the chemical nature of the substance inducing transformation of pneumococcal types : induction of transformation by a desoxyribonucleic acid fraction isolated from pneumococcus type III. J. Exp. Med. 79, 137–158 (1944).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 73.

    Lanie, J. A. et al. Genome sequence of Avery’s virulent serotype 2 strain D39 of Streptococcus pneumoniae and comparison with that of unencapsulated laboratory strain R6. J. Bacteriol. 189, 38–51 (2007).

    CAS 
    PubMed 

    Google Scholar 



  • Source link

    You may also like

    Leave a Comment