Home Virus Germs & Bacteria Host phylogeny and life history stage shape the gut microbiome in dwarf ( Kogia sima ) and pygmy ( Kogia breviceps ) sperm whales

Host phylogeny and life history stage shape the gut microbiome in dwarf ( Kogia sima ) and pygmy ( Kogia breviceps ) sperm whales

by World Health Now
0 comment


  • 1.

    Bordenstein, S. R. & Theis, K. R. Host biology in light of the microbiome: ten principles of holobionts and hologenomes. PLOS Biol. 13, e1002226 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 2.

    Cho, I. & Blaser, M. J. The human microbiome: at the interface of health and disease. Nat. Rev. Genet. 13, 260–270 (2012).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • 3.

    Huttenhower, C. et al. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).

    ADS 
    CAS 

    Google Scholar 

  • 4.

    Barko, P. C., McMichael, M. A., Swanson, K. S. & Williams, D. A. The gastrointestinal microbiome: a review. J. Vet. Intern. Med. 32, 9–25 (2018).

    PubMed 
    CAS 

    Google Scholar 

  • 5.

    Guarner, F. & Malagelada, J.-R. Gut flora in health and disease. Lancet 360, 8 (2003).

    Google Scholar 

  • 6.

    Shafquat, A., Joice, R., Simmons, S. L. & Huttenhower, C. Functional and phylogenetic assembly of microbial communities in the human microbiome. Trends Microbiol. 22, 261–266 (2014).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • 7.

    Qin, J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–65 (2010).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • 8.

    Yildirim, S. et al. Characterization of the fecal microbiome from non-human wild primates reveals species specific microbial communities. PLoS ONE 5, e13963 (2010).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 9.

    Nelson, T. M., Apprill, A., Mann, J., Rogers, T. L. & Brown, M. V. The marine mammal microbiome: current knowledge and future directions. Microbiol. Aust. 36, 8–13 (2015).

    Google Scholar 

  • 10.

    Bik, E. M. et al. Marine mammals harbor unique microbiotas shaped by and yet distinct from the sea. Nat. Commun. 7, 10516 (2016).

    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • 11.

    Ley, R. E. et al. Evolution of mammals and their gut microbes. Science 320, 1647–1651 (2008).

    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • 12.

    Shade, A. & Handelsman, J. Beyond the Venn diagram: the hunt for a core microbiome. Environ. Microbiol. 14, 4–12 (2012).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • 13.

    Moura, J. F. et al. Stranding events of Kogia whales along the Brazilian coast. PLoS ONE 11, e0146108 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 14.

    Avila, I. C., Kaschner, K. & Dormann, C. F. Current global risks to marine mammals: taking stock of the threats. Biol. Conserv. 221, 44–58 (2018).

    Google Scholar 

  • 15.

    Apprill, A. Marine animal microbiomes: toward understanding host–microbiome interactions in a changing ocean. Front. Mar. Sci. 4, 222 (2017).

    Google Scholar 

  • 16.

    Sanders, J. G. et al. Baleen whales host a unique gut microbiome with similarities to both carnivores and herbivores. Nat. Commun. 6, 8285 (2015).

    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • 17.

    Nelson, T. M., Rogers, T. L. & Brown, M. V. The gut bacterial community of mammals from marine and terrestrial habitats. PLoS ONE 8, e83655 (2013).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 18.

    Staudinger, M. D., McAlarney, R. J., McLellan, W. A. & Ann Pabst, D. Foraging ecology and niche overlap in pygmy (Kogia breviceps) and dwarf (Kogia sima) sperm whales from waters of the U.S. mid-Atlantic coast. Mar. Mammal Sci. 30, 626–655 (2014).

    Google Scholar 

  • 19.

    McAlpine, D. Pygmy and dwarf sperm whales: Kogia breviceps and K. sima. In Encyclopedia of Marine Mammals (eds Perrin, W. et al.) 936–938 (Academic Press, Cambridge, 2009).

    Google Scholar 

  • 20.

    Manire, C. A., Rhinehart, H. L., Barros, N. B., Byrd, L. & Cunningham-Smith, P. An approach to the rehabilitation of Kogia spp. Aquat. Mamm. 30, 257–270 (2004).

    Google Scholar 

  • 21.

    Beatson, E. The diet of pygmy sperm whales, Kogia breviceps, stranded in New Zealand: implications for conservation. Rev. Fish Biol. Fish. 17, 295–303 (2007).

    Google Scholar 

  • 22.

    Erwin, P. M. et al. High diversity and unique composition of gut microbiomes in pygmy (Kogia breviceps) and dwarf (K. sima) sperm whales. Sci. Rep. 7, 7205 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 23.

    Adrangi, S. & Faramarzi, M. A. From bacteria to human: a journey into the world of chitinases. Biotechnol. Adv. 31, 1786–1795 (2013).

    PubMed 
    CAS 

    Google Scholar 

  • 24.

    Lagier, J.-C. et al. Microbial culturomics: paradigm shift in the human gut microbiome study. Clin. Microbiol. Infect. 18, 1185–1193 (2012).

    PubMed 
    CAS 

    Google Scholar 

  • 25.

    Morris, P. J. et al. Isolation of culturable microorganisms from free-ranging bottlenose dolphins (Tursiops truncatus) from the southeastern United States. Vet. Microbiol. 148, 440–447 (2011).

    PubMed 

    Google Scholar 

  • 26.

    Buck, J. D., Wells, R. S., Rhinehart, H. L. & Hansen, L. J. Aerobic microorganisms associated with free-ranging bottlenose dolphins in coastal Gulf of Mexico and Atlantic Ocean waters. J. Wildl. Dis. 42, 536–544 (2006).

    PubMed 

    Google Scholar 

  • 27.

    Browne, H. P. et al. Culturing of ‘unculturable’ human microbiota reveals novel taxa and extensive sporulation. Nature 533, 543–546 (2016).

    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • 28.

    Simůnek, J., Kopecný, J., Hodrová, B. & Bartonová, H. Identification and characterization of Clostridium paraputrificum, a chitinolytic bacterium of human digestive tract. Folia Microbiol. (Praha) 47, 559–564 (2002).

    Google Scholar 

  • 29.

    Evvyernie, D. et al. Identification and characterization of Clostridium paraputrificum M-21, a chitinolytic, mesophilic and hydrogen-producing bacterium. J. Biosci. Bioeng. 89, 596–601 (2000).

    PubMed 
    CAS 

    Google Scholar 

  • 30.

    Tap, J. et al. Towards the human intestinal microbiota phylogenetic core. Environ. Microbiol. 11, 2574–2584 (2009).

    PubMed 

    Google Scholar 

  • 31.

    Koenig, J. E. et al. Succession of microbial consortia in the developing infant gut microbiome. Proc. Natl. Acad. Sci. 108, 4578–4585 (2011).

    ADS 
    PubMed 
    CAS 

    Google Scholar 

  • 32.

    Greenhalgh, K., Meyer, K. M., Aagaard, K. M. & Wilmes, P. The human gut microbiome in health: establishment and resilience of microbiota over a lifetime. Environ. Microbiol. 18, 2103–2116 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 33.

    Ferretti, P. et al. Mother-to-infant microbial transmission from different body sites shapes the developing infant gut microbiome. Cell Host Microbe 24, 133-145.e5 (2018).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • 34.

    Dominguez-Bello, M. G. et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc. Natl. Acad. Sci. 107, 11971–11975 (2010).

    ADS 
    PubMed 

    Google Scholar 

  • 35.

    Nelson, T. M., Rogers, T. L., Carlini, A. R. & Brown, M. V. Diet and phylogeny shape the gut microbiota of Antarctic seals: a comparison of wild and captive animals. Environ. Microbiol. 15, 1132–1145 (2013).

    PubMed 
    CAS 

    Google Scholar 

  • 36.

    Mutic, A. D. et al. The postpartum maternal and newborn microbiomes. MCN Am. J. Matern. Nurs. 42, 326–331 (2017).

    Google Scholar 

  • 37.

    Smid, M. et al. Maternal gut microbiome biodiversity in pregnancy. Am. J. Perinatol. 35, 024–030 (2018).

    Google Scholar 

  • 38.

    Aagaard, K. et al. A metagenomic approach to characterization of the vaginal microbiome signature in pregnancy. PLoS ONE 7, e36466 (2012).

    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • 39.

    Antwis, R. E., Edwards, K. L., Unwin, B., Walker, S. L. & Shultz, S. Rare gut microbiota associated with breeding success, hormone metabolites and ovarian cycle phase in the critically endangered eastern black rhino. Microbiome 7, 27 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 40.

    Rodríguez, J. M. et al. The composition of the gut microbiota throughout life, with an emphasis on early life. Microb. Ecol. Health Dis. 26, 26050 (2015).

    PubMed 

    Google Scholar 

  • 41.

    Odamaki, T. et al. Age-related changes in gut microbiota composition from newborn to centenarian: a cross-sectional study. BMC Microbiol. 16, 90 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 42.

    Boot, R. G. et al. Identification of a novel acidic mammalian chitinase distinct from chitotriosidase. J. Biol. Chem. 276, 6770–6778 (2001).

    PubMed 
    CAS 

    Google Scholar 

  • 43.

    German, J. B., Freeman, S. L., Lebrilla, C. B. & Mills, D. A. Human milk oligosaccharides: evolution, structures and bioselectivity as substrates for intestinal bacteria. In: Nestlé Nutrition Workshop Series: Pediatric Program Vol. 62 (eds. Bier, D. M., German, J. B. & Lönnerdal, B.) 205–222 (KARGER, 2008).

  • 44.

    Katayama, T. Host-derived glycans serve as selected nutrients for the gut microbe: human milk oligosaccharides and bifidobacteria. Biosci. Biotechnol. Biochem. 80, 621–632 (2016).

    PubMed 
    CAS 

    Google Scholar 

  • 45.

    Underwood, M. A., German, J. B., Lebrilla, C. B. & Mills, D. A. Bifidobacterium longum subspecies infantis: champion colonizer of the infant gut. Pediatr. Res. 77, 229–235 (2015).

    PubMed 
    CAS 

    Google Scholar 

  • 46.

    Smith, S. C., Chalker, A., Dewar, M. L. & Arnould, J. P. Y. Age-related differences revealed in Australian fur seal Arctocephalus pusillus doriferus gut microbiota. FEMS Microbiol. Ecol. 86, 246–255 (2013).

    PubMed 
    CAS 

    Google Scholar 

  • 47.

    Venn-Watson, S., Smith, C. & Jensen, E. Primary bacterial pathogens in bottlenose dolphins Tursiops truncatus: needles in haystacks of commensal and environmental microbes. Dis. Aquat. Organ. 79, 87–93 (2008).

    PubMed 

    Google Scholar 

  • 48.

    Danil, K. et al. Clostridium perfringens septicemia in a long-beaked common dolphin Delphinus capensis: an etiology of gas bubble accumulation in cetaceans. Dis. Aquat. Organ. 111, 183–190 (2014).

    ADS 
    PubMed 

    Google Scholar 

  • 49.

    Johnson, W. R. et al. Novel diversity of bacterial communities associated with bottlenose dolphin upper respiratory tracts. Environ. Microbiol. Rep. 1, 555–562 (2009).

    PubMed 
    CAS 

    Google Scholar 

  • 50.

    Shreiner, A. B., Kao, J. Y. & Young, V. B. The gut microbiome in health and in disease. Curr. Opin. Gastroenterol. 31, 69–75 (2015).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • 51.

    Byrd, B. L. et al. Strandings as indicators of marine mammal biodiversity and human interactions off the coast of North Carolina. Fish. Bull. 112, 1–23 (2014).

    Google Scholar 

  • 52.

    Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. 108, 4516–4522 (2011).

    ADS 
    PubMed 
    CAS 

    Google Scholar 

  • 53.

    Schloss, P. D. et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541 (2009).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • 54.

    Westcott, S. L. & Schloss, P. D. OptiClust: improved method for assigning amplicon-based sequence data to operational taxonomic units. bioRxiv https://doi.org/10.1101/096537 (2016).

    Article 

    Google Scholar 

  • 55.

    DeSantis, T. Z. et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72, 5069–5072 (2006).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • 56.

    Benjamini, Y. & Yekutieli, D. The control of false discovery rate in multiple testing under dependency. Ann. Stat. 29, 1165–1188 (2001).

    MathSciNet 
    MATH 

    Google Scholar 

  • 57.

    Duncan, S. H. Growth requirements and fermentation products of Fusobacterium prausnitzii, and a proposal to reclassify it as Faecalibacterium prausnitzii gen. nov., comb. nov.. Int. J. Syst. Evol. Microbiol. 52, 2141–2146 (2002).

    PubMed 
    CAS 

    Google Scholar 

  • 58.

    Reysenbach, A. L., Wickham, G. S. & Pace, N. R. Phylogenetic analysis of the hyperthermophilic pink filament community in Octopus Spring Yellowstone National Park. Appl. Environ. Microbiol. 60, 2113–2119 (1994).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • 59.

    Martinez-Murcia, A. J., Acinas, S. G. & Rodriguez-Valera, F. Evaluation of prokaryotic diversity by restrictase digestion of 16s rDNA directly amplified from hypersaline environments. FEMS Microbiol. Ecol. 17, 247–256 (1995).

    CAS 

    Google Scholar 

  • 60.

    McBride, M. J., Braun, T. F. & Brust, J. L. Flavobacterium johnsoniae GldH is a lipoprotein that Is required for gliding motility and chitin utilization. J. Bacteriol. 185, 6648–6657 (2003).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • 61.

    Bhattacharya, D., Nagpure, A. & Gupta, R. Bacterial chitinases: properties and potential. Crit. Rev. Biotechnol. 27, 21–28 (2007).

    PubMed 
    CAS 

    Google Scholar 

  • 62.

    Hejazi, A. & Falkiner, F. Serratia marcescens. J. Med. Microbiol. 46, 903–912 (1997).

    PubMed 
    CAS 

    Google Scholar 



  • Source link

    You may also like

    Leave a Comment