Home Medical Science Roniciclib down-regulates stemness and inhibits cell growth by inducing nucleolar stress in neuroblastoma

Roniciclib down-regulates stemness and inhibits cell growth by inducing nucleolar stress in neuroblastoma

by World Health Now
0 comment


  • 1.

    Cheung, N. K. & Dyer, M. A. Neuroblastoma: Developmental biology, cancer genomics and immunotherapy. Nat. Rev. Cancer 13, 397–411 (2013).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • 2.

    Speleman, F., Park, J. R. & Henderson, T. O. Neuroblastoma: A tough nut to crack. Am. Soc. Clin. Oncol. Educ. Book 35, e548-557 (2016).

    PubMed 

    Google Scholar 

  • 3.

    Smith, M. A. et al. Outcomes for children and adolescents with cancer: Challenges for the twenty-first century. J. Clin. Oncol. 28, 2625–2634 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 4.

    Kushner, B. H. et al. Survival from locally invasive or widespread neuroblastoma without cytotoxic therapy. J. Clin. Oncol. 14, 373–381 (1996).

    PubMed 
    CAS 

    Google Scholar 

  • 5.

    Matthay, K. K. et al. Long-term results for children with high-risk neuroblastoma treated on a randomized trial of myeloablative therapy followed by 13-cis-retinoic acid: a Children’s Oncology Group study. J. Clin. Oncol. 27, 1007–1013 (2009).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • 6.

    Visvader, J. E. & Lindeman, G. J. Cancer stem cells in solid tumours: Accumulating evidence and unresolved questions. Nat. Rev. Cancer 8, 755–768 (2008).

    PubMed 
    CAS 

    Google Scholar 

  • 7.

    Salk, J. J., Fox, E. J. & Loeb, L. A. Mutational heterogeneity in human cancers: Origin and consequences. Annu. Rev. Pathol. 5, 51–75 (2010).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • 8.

    Shackleton, M., Quintana, E., Fearon, E. R. & Morrison, S. J. Heterogeneity in cancer: Cancer stem cells versus clonal evolution. Cell 138, 822–829 (2009).

    PubMed 
    CAS 

    Google Scholar 

  • 9.

    Hasmim, M. et al. Isolation and characterization of renal cancer stem cells from patient-derived xenografts. Oncotarget 7, 15507–15524 (2016).

    PubMed 

    Google Scholar 

  • 10.

    Tang, C., Ang, B. T. & Pervaiz, S. Cancer stem cell: Target for anti-cancer therapy. FASEB J. 21, 3777–3785 (2007).

    PubMed 
    CAS 

    Google Scholar 

  • 11.

    Kamijo, T. Role of stemness-related molecules in neuroblastoma. Pediatr. Res. 71, 511–515 (2012).

    PubMed 
    CAS 

    Google Scholar 

  • 12.

    Chakrabarti, L., Abou-Antoun, T., Vukmanovic, S. & Sandler, A. D. Reversible adaptive plasticity: A mechanism for neuroblastoma cell heterogeneity and chemo-resistance. Front. Oncol. 2, 82 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 13.

    Buhagiar, A. & Ayers, D. Chemoresistance, cancer stem cells, and miRNA influences: The case for neuroblastoma. Anal. Cell. Pathol. 2015, 150634 (2015).

    Google Scholar 

  • 14.

    Walton, J. D. et al. Characteristics of stem cells from human neuroblastoma cell lines and in tumors. Neoplasia 6, 838–845 (2004).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 15.

    Ross, R. A. et al. Human neuroblastoma I-type cells are malignant neural crest stem cells. Cell Growth Differ. 6, 449–456 (1995).

    PubMed 
    CAS 

    Google Scholar 

  • 16.

    Coulon, A. et al. Functional sphere profiling reveals the complexity of neuroblastoma tumor-initiating cell model. Neoplasia 13, 991–1004 (2011).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • 17.

    Ross, R. A., Walton, J. D., Han, D., Guo, H. F. & Cheung, N. K. A distinct gene expression signature characterizes human neuroblastoma cancer stem cells. Stem Cell Res. 15, 419–426 (2015).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • 18.

    Hansford, L. M. et al. Neuroblastoma cells isolated from bone marrow metastases contain a naturally enriched tumor-initiating cell. Cancer Res. 67, 11234–11243 (2007).

    PubMed 
    CAS 

    Google Scholar 

  • 19.

    Smith, K. M. et al. Selective targeting of neuroblastoma tumour-initiating cells by compounds identified in stem cell-based small molecule screens. EMBO Mol. Med. 2, 371–384 (2010).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • 20.

    Grinshtein, N. et al. Small molecule kinase inhibitor screen identifies polo-like kinase 1 as a target for neuroblastoma tumor initiating cells. Cancer Res. 71, 1385–1395 (2011).

    PubMed 
    CAS 

    Google Scholar 

  • 21.

    Barton, J. et al. Establishment and phenotyping of neurosphere cultures from primary neuroblastoma samples. F1000Res. 8, 823 (2019).

  • 22.

    Cantilena, S. et al. Frizzled receptor 6 marks rare, highly tumourigenic stem like cells in mouse and human neuroblastomas. Oncotarget 2, 976–983 (2011).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 23.

    Hsu, D. M. et al. G-CSF receptor positive neuroblastoma subpopulations are enriched in chemotherapy- resistant or relapsed tumors and are highly tumorigenic. Cancer Res. 73, 4134–4146 (2013).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • 24.

    Wang, F. et al. Nucleolin is a functional binding protein for salinomycin in neuroblastoma stem cells. J. Am. Chem. Soc. 141, 3613–3622 (2019).

    PubMed 
    CAS 

    Google Scholar 

  • 25.

    Jia, W., Yao, Z., Zhao, J., Guan, Q. & Gao, L. New perspectives of physiological and pathological functions of nucleolin (NCL). Life Sci. 186, 1–10 (2017).

    PubMed 
    CAS 

    Google Scholar 

  • 26.

    Xu, C. et al. Targeting surface nucleolin induces autophagy-dependent cell death in pancreatic cancer via AMPK activation. Oncogene 38, 1832–1844 (2019).

    PubMed 
    CAS 

    Google Scholar 

  • 27.

    Palmieri, D. et al. Human anti-nucleolin recombinant immunoagent for cancer therapy. Proc. Natl. Acad. Sci. U S A 112, 9418–9423 (2015).

    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • 28.

    Yang, K., Yang, J. & Yi, J. Nucleolar stress: Hallmarks, sensing mechanism and diseases. Cell Stress 10, 125–140 (2018).

    Google Scholar 

  • 29.

    Tsai, R. Y. & Pederson, T. Connecting the nucleolus to the cell cycle and human disease. FASEB J. 28, 3290–3296 (2014).

    PubMed 
    CAS 

    Google Scholar 

  • 30.

    Tsekrekou, M., Stratigi, K. & Chatzinikolaou, G. The nucleolus: In genome maintenance and repair. Int. J. Mol. Sci. 18, 1411 (2017).

  • 31.

    Iarovaia, O. V. et al. Nucleolus: A central hub for nuclear functions. Trends Cell Biol. 29, 647–659 (2019).

    PubMed 
    CAS 

    Google Scholar 

  • 32.

    Dillinger, S., Straub, T. & Németh, A. Nucleolus association of chromosomal domains is largely maintained in cellular senescence despite massive nuclear reorganisation. PLoS ONE 12, e0178821 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 33.

    Golomb, L., Volarevic, S. & Oren, M. p53 and ribosome biogenesis stress: the essentials. FEBS Lett. 588, 2571–2579 (2014).

    PubMed 
    CAS 

    Google Scholar 

  • 34.

    Weeks, S. E., Metge, B. J. & Samant, R. S. The nucleolus: A central response hub for the stressors that drive cancer progression. Cell Mol. Life Sci. 76, 4511–4524 (2019).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • 35.

    Carotenuto, P., Pecoraro, A., Palma, G., Russo, G. & Russo, A. Therapeutic approaches targeting nucleolus in cancer. Cells 8, pii: E1090 (2019).

  • 36.

    Lu, L. et al. Nucleolar stress: Is there a reverse version?. Cancer 9, 3723–3727 (2018).

    Google Scholar 

  • 37.

    Woods, S. J., Hannan, K. M., Pearson, R. B. & Hannan, R. D. The nucleolus as a fundamental regulator of the p53 response and a new target for cancer therapy. Biochim. Biophys. Acta 1849, 821–829 (2015).

    PubMed 
    CAS 

    Google Scholar 

  • 38.

    Catez, F. et al. Ribosome biogenesis: An emerging druggable pathway for cancer therapeutics. Biochem. Pharmacol. 159, 74–81 (2019).

    PubMed 
    CAS 

    Google Scholar 

  • 39.

    Yang, X. H., Tang, F., Shin, J. & Cunningham, J. M. A c-Myc-regulated stem cell-like signature in high-risk neuroblastoma: A systematic discovery (target neuroblastoma ESC-like signature). Sci. Rep. 7, 41 (2017).

    ADS 
    PubMed 

    Google Scholar 

  • 40.

    Šašinková, M., Holoubek, A., Otevřelová, P., Kuželová, K. & Brodská, B. AML-associated mutation of nucleophosmin compromises its interaction with nucleolin. Int. J. Biochem. Cell Biol. 103, 65–73 (2018).

    PubMed 

    Google Scholar 

  • 41.

    Bosse, K. R. et al. Identification of GPC2 as an oncoprotein and candidate immunotherapeutic target in high-risk neuroblastoma. Cancer Cell 32, 295-309.e12 (2017).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • 42.

    Wei, S., Liu, K., He, Q., Gao, Y. & Shen, L. PES1 is regulated by CD44 in liver cancer stem cells via miR-105-5p. FEBS Lett. 2019(593), 1777–1786 (2019).

    Google Scholar 

  • 43.

    Todaro, M. et al. CD44v6 is a marker of constitutive and reprogrammed cancer stem cells driving colon cancer metastasis. Cell Stem Cell 14, 342–356 (2014).

    PubMed 
    CAS 

    Google Scholar 

  • 44.

    Ma, L., Dong, L. & Chang, P. CD44v6 engages in colorectal cancer progression. Cell Death Dis. 10, 30 (2019).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • 45.

    Wang, Z., Zhao, K., Hackert, T. & Zöller, M. CD44/CD44v6 a reliable companion in cancer-initiating cell maintenance and tumor progression. Front. Cell Dev. Biol. 6, 97–125 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 46.

    Jijiwa, M. et al. CD44v6 regulates growth of brain tumor stem cells partially through the AKT-mediated pathway. PLoS ONE 6, e24217 (2011).

    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • 47.

    Martyn, I., Kanno, T. Y., Ruzo, A., Siggia, E. D. & Brivanlou, A. H. Self-organization of a human organizer by combined Wnt and nodal signalling. Nature 558, 132–215 (2018).

    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • 48.

    Kocak, H. et al. Hox-C9 activates the intrinsic pathway of apoptosis and is associated with spontaneous regression in neuroblastoma. Cell Death Dis. 4, e586 (2013).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • 49.

    Ladenstein, R. et al. Randomized trial of prophylactic granulocyte colony-stimulating factor during rapid COJEC induction in pediatric patients with high-risk neuroblastoma: The European HR-NBL1/SIOPEN study. J. Clin. Oncol. 28, 3516–3524 (2010).

    PubMed 
    CAS 

    Google Scholar 

  • 50.

    Ognibene, M., Podestà, M., Garaventa, A. & Pezzolo, A. Role of GOLPH3 and TPX2 in neuroblastoma DNA damage response and cell resistance to chemotherapy. Int. J. Mol. Sci. 20, 19 (2019).

    Google Scholar 

  • 51.

    Ognibene, M. et al. CHL1 gene acts as a tumor suppressor in human neuroblastoma. Oncotarget 9, 25903–25921 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 52.

    Borovski, T., De Sousa, E., Melo, F., Vermeulen, L. & Medema, J. P. Cancer stem cell niche: the place to be. Cancer Res. 71, 634–639 (2011).

    PubMed 
    CAS 

    Google Scholar 

  • 53.

    Lucking, U. et al. The lab oddity prevails: discovery of pan-CDK inhibitor (R)-S-cyclopropyl-S-(4-{[4-{[(1R,2R)-2-hydroxy-1-methylpropyl]oxy}-5-(-(trifluoromethyl)pyrimdin-2-yl]amino}phenyl)sulfoximide (BAY 1000394) for the treatment of cancer. Chem. Med. Chem. 8, 1067–1085 (2013).

    PubMed 

    Google Scholar 

  • 54.

    Li, Z. et al. EZH2 regulates neuroblastoma cell differentiation via NTRK1 promoter epigenetic modifications. Oncogene 37, 2714–2727 (2018).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • 55.

    Lamour, V. et al. Targeting osteopontin suppresses glioblastoma stem-like cell character and tumorigenicity in vivo. Int. J. Cancer 137, 1047–1057 (2015).

    PubMed 
    CAS 

    Google Scholar 

  • 56.

    Izant, J.G. & McIntosh, J.R. Microtubule-associated proteins: A monoclonal antibody to MAP2 binds to differentiated neurons. Proc. Natl. Acad. Sci U S A 77, 4741–45 (1980).

  • 57.

    Reya, T. et al. A role for Wnt signaling in self-renewal of haematopoietic stem cells. Nature 423, 409–414 (2003).

    ADS 
    PubMed 
    CAS 

    Google Scholar 

  • 58.

    Clevers, H. Wnt/beta-catenin signaling in development and disease. Cell 127, 469–480 (2006).

    PubMed 
    CAS 

    Google Scholar 

  • 59.

    Mao, B. et al. LDL-receptor-related protein 6 is a receptor for Dickkopf proteins. Nature 411, 321–325 (2001).

    ADS 
    PubMed 
    CAS 

    Google Scholar 

  • 60.

    Yang, K. et al. A redox mechanism underlying nucleolar stress sensing by nucleophosmin. Nat. Commun. 7, 13599 (2016).

    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • 61.

    Kurki, S. et al. Nucleolar protein NPM interacts with HDM2 and protects tumor suppressor protein p53 from HDM2-mediated degradation. Cancer Cell 5, 465–475 (2004).

    PubMed 
    CAS 

    Google Scholar 

  • 62.

    Colombo, E., Marine, J. C., Danovi, D., Falini, B. & Pelicci, P. G. Nucleophosmin regulates the stability and transcriptional activity of p53. Nat. Cell Biol. 4, 529–533 (2002).

    PubMed 
    CAS 

    Google Scholar 

  • 63.

    Wang, W., Budhu, A., Forgues, M. & Wang, X. W. Temporal and spatial control of nucleophosmin by the Ran-Crm1 complex in centrosome duplication. Nat. Cell Biol. 7, 823–830 (2005).

    PubMed 
    CAS 

    Google Scholar 

  • 64.

    Brady, S. N. et al. Nucleophosmin protein expression level, but not threonine 198 phosphorylation, is essential in growth and proliferation. Oncogene 28, 3209–3220 (2009).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • 65.

    Chaitanya, G.V., Steven & A.J., Babu, P.P. PARP-1 cleavage fragments: signatures of cell-death proteases in neurodegeneration. Cell Commun. Signal. 8, 8–11 (2010).

  • 66.

    Castri, P. et al. Poly(ADP-ribose) polymerase-1 and its cleavage products differentially modulate cellular protection through NF-kappaB-dependent signaling. Biochim. Biophys. Acta. 1843, 640–651 (2014).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • 67.

    Liu, P., Begley, M. & Michowski, W. Cell-cycle-regulated activation of Akt kinase by phosphorylation at its carboxyl terminus. Nature 508, 541–545 (2014).

    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • 68.

    Lin, S. F., Lin, J. D., Hsueh, C., Chou, T. C. & Wong, R. J. Activity of roniciclib in medullary thyroid cancer. Oncotarget. 9, 28030–28041 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 69.

    Zhou, B. B. et al. Tumour initiating cells: Challenges and opportunities for anticancer drug discovery. Nat. Rev. Drug. Discov. 8, 806–823 (2009).

    PubMed 
    CAS 

    Google Scholar 

  • 70.

    Reck, M. et al. Phase II study of roniciclib in combination with cisplatin/etoposide or carboplatin/etoposide as first-line therapy in patients with extensive-disease small cell lung cancer. J. Thorac. Oncol. 14, 701–711 (2019).

    PubMed 
    CAS 

    Google Scholar 

  • 71.

    Ugrinova, I. et al. Inactivation of nucleolin leads to nucleolar disruption, cell cycle arrest and defects in centrosome duplication. BMC Mol. Biol. 8, 66 (2007).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 72.

    Peunova, N. & Enikolopov, G. Nitric oxide triggers a switch to growth arrest during differentiation of neuronal cells. Nature 375, 68–73 (1995).

    ADS 
    PubMed 
    CAS 

    Google Scholar 

  • 73.

    Erickson, J. D. & Bazan, N. G. The nucleolus fine-tunes the orchestration of an early neuroprotection response in neurodegeneration. Cell Death Differ. 20, 1435–1437 (2013).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • 74.

    Hetman, M. & Pietrzak, M. Emerging roles of the neuronal nucleolus. Trends Neurosci. 35, 305–314 (2012).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • 75.

    Parlato, R. & Liss, B. How Parkinson’s disease meets nucleolar stress. Biochim. Biophys. Acta 1842, 791–797 (2014).

    PubMed 
    CAS 

    Google Scholar 

  • 76.

    Liu, Q. et al. LncRNA SAMD12-AS1 promotes cell proliferation and inhibits apoptosis by interacting with NPM1. Sci. Rep. 9, 11593 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 77.

    Nakaguro, M. et al. Nucleolar protein PES1 is a marker of neuroblastoma outcome and is associated with neuroblastoma differentiation. Cancer Sci. 106, 237–243 (2015).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • 78.

    Pfister, J. A. & D’Mello, S. R. Regulation of neuronal survival by nucleophosmin 1 (NPM1) is dependent on its expression level, subcellular localization, and oligomerization status. J. Biol. Chem. 291, 20787–20797 (2016).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • 79.

    Zeller, K. I. et al. Characterization of nucleophosmin (B23) as a Myc target by scanning chromatin immunoprecipitation. J. Biol. Chem. 276, 48285–48291 (2001).

    PubMed 
    CAS 

    Google Scholar 

  • 80.

    Handschuh, L. et al. NPM1 alternative transcripts are up-regulated in acute myeloid and lymphoblastic leukemia and their expression level affects patient outcome. J. Transl. Med. 16, 232 (2018).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • 81.

    Di Matteo, A. et al. Molecules that target nucleophosmin for cancer treatment an update. Oncotarget 28, 44821–44840 (2016).

    Google Scholar 

  • 82.

    Palmini, G. et al. Establishment of cancer stem cell cultures from human conventional osteosarcoma. J. Vis. Exp. 116, e53884 (2016).

    Google Scholar 

  • 83.

    Brodeur, G. M. et al. Revisions of the international criteria for neuroblastoma diagnosis, staging, and response to treatment. J Clin Oncol. 11, 1466–1477 (1993).

    PubMed 
    CAS 

    Google Scholar 

  • 84.

    Koster, J., Molenaar, J.J. & Versteeg, R. R2: Accessible web-based genomics analysis and visualization platform for biomedical researchers. In Proceedings of the AACR Special Conference on Translation of the Cancer Genome, San Francisco, CA, Feb 7–9, 2015. Cancer Res. 75 (22); abstract nr A2–45 (2015).



  • Source link

    You may also like

    Leave a Comment